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Abstract
We discuss the Poisson structure underlying the two-field Kowalevski gyrostat
and the Kowalevski top. We start from their Lax structure and construct
a suitable pencil of Poisson brackets which endows these systems with
the structure of bi-Hamiltonian completely integrable systems. We study
the Casimir functions of such pencils, and show how it is possible to
frame the Kowalevski systems within the so-called Gel’fand–Zakharevich bi-
Hamiltonian setting for integrable systems.

PACS numbers: 0230I, 0210, 0220, 0240, 4520J

1. Introduction

The Kowalevski top (and its generalizations) are among the most intriguing finite-dimensional
completely integrable Hamiltonian systems (see, e.g., [2, pp 189 ff] and references quoted
therein). Framing them within the theory of Lax pairs and understanding their structure of
algebraically completely integrable systems [1, 3, 6, 9] was one of the major breakthroughs in
the study of these topics.

The aim of this paper is to deepen the study of some of their Hamiltonian aspects. Our
starting point is the final section of [8], where it has been shown that the Lax formulation for the
so-called Kowalevski gyrostat in two fields found in [9] admits both an r-matrix interpretation
and a bi-Hamiltonian formulation. To achieve this, a peculiar splitting of the zero-degree
part of the relevant twisted loop algebra, and an extension of the nine-dimensional Bobenko,
Reyman, Semenov-Tian-Shansky phase space to a ten-dimensional bi-Hamiltonian manifold
were performed.

Our first task is to show that the geometric counterpart of such a construction is a
deformation of the ‘standard’ Poisson pencil along a triple of characteristic vector fields.
Since such a deformation preserves the property that bi-Hamiltonian vector fields induce
Lax flows on the Lax matrix, the commuting Hamiltonians of the deformed Poisson pencil
coincide with those of the undeformed pencil (although the bi-Hamiltonian vector fields are
different). Then we will discuss the so-called Gel’fand–Zakharevich geometry of the two-field
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Kowalevski gyrostat. We shall show that it can be represented by a pair of Lenard sequences
of length 2, that is, in the terminology of [5], the phase space of the two-field Kowalevski
gyrostat has a pure Kronecker structure of type (5, 5).

As is well established, the original Kowalevski top sits inside the two-field Kowalevski
gyrostat system as a submanifold obtained simply by putting the extra degrees of freedom to
zero. Thus it is very natural to try to endow the Kowalevski top hierarchy with a Poisson pencil
obtained by Dirac reduction from the original one. Indeed, at the end of the paper, we show
that this procedure is effective and endows the Kowalevski top system with a pure Kronecker
bi-Hamiltonian structure of type (3, 3).

2. Pencils of Poisson structures and Lax representations

In this section we will briefly discuss/review some facts concerning the relations between
the Lax representation of a dynamical system defined on a space of matrices polynomially
depending on the spectral parameter, and the bi-Hamiltonian representation of the system
itself. We will restrict ourselves to the case of the twisted loop algebra associated with the
Kowalevski problem.

Let us consider sp(4) and the involution τ on the loop space Lsp(4)((z)) defined by

τ(X(z)) = −Xt(−z). (2.1)

If the fundamental symplectic matrix J is chosen to be

J =
[

iσ2 0
0 iσ2

]
with iσ2 =

[
0 1

−1 0

]
(2.2)

one sees that the Cartan decomposition sp(4) = a ⊕ s into spaces of antisymmetric and
symmetric traceless matrices holds. Such a decomposition is particularly convenient to
explicitly describe the twisted loop algebra Lτ sp(4)((z)) formed by those elements fixed by
the involution τ , since its polynomial elements are given by sums of the form

X(z) = A1 + zS1 + z2A2 + z3S2 + · · · Ai ∈ a Si ∈ s. (2.3)

As is well known (see, e.g., [7,10]), on the loop space of an arbitrary Lie algebra g a family of
mutually compatible Poisson structuresl , associated with the family rl of classical r-matrices

rl(X(z)) = (zlX(z))+ − (zlX(z))− (2.4)

is defined1. By means of straightforward calculations one proves the following.

Proposition 2.1. Let M3
� be the affine subspace of Lτ sp(4)((z)) consisting of polynomial

matrices of the form

M = z3� + z2A + zS + B � =
[

0 0
0 −2σ3

]
σ3 =

(
1 0
0 −1

)
(2.5)

where At = −A,Bt = −B, St = S. The Poisson structures 1 and 3 restrict to M3
� and

form a Poisson pencil Pz = 3 − z21 := P − z2R.

Explicitly, the two Poisson structures can be described as follows. Let ∂H
∂A

, ∂H
∂S

, ∂H
∂B

be matrices
representing (under the natural identification given by the trace form) the derivatives with
respect to the natural coordinates in M3

� of any Hamiltonian function H . The Hamiltonian
vector fields with respect to P are given by[

Ȧ

Ṡ

Ḃ

]
=

[ [A, ·] [S, ·] [B, ·]
[S, ·] [B, ·]
[B, ·]

] 


∂H
∂A

∂H
∂S

∂H
∂B


 (2.6)

1 Here, (·)± refers to the projection onto non-negative and negative powers of z.
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while the Hamiltonian vector fields with respect to R are given by[
Ȧ

Ṡ

Ḃ

]
=

[ −[�, ·]
−[�, ·] −[A, ·]

[B, ·]

] 


∂H
∂A

∂H
∂S

∂H
∂B


 . (2.7)

The fundamental property of such a formulation relies on the following property, that can be
proven by a straightforward computation.

Proposition 2.2. All vector fields that can be represented in the form[
Ȧ

Ṡ

Ḃ

]
= (P − z2R) [

VA

VS

VB

]
(2.8)

where {VA, VS, VB} stands for any (possibly z-dependent) differential one-form on M3
� , that

is, in the Gel’fand–Zakharevich parlance, all vector fields that are tangent to the soul (or axis)
of the bi-Hamiltonian manifold M3

� , admit the Lax representation

L̇(z) = [L(z),M(z)] (2.9)

where

L(z) = z3� + z2A + zS + B and M(z) = zVS + VA. (2.10)

2.1. Deformation of the standard Poisson pencil and the bi-Hamiltonian structure for the
two-field Kowalevski gyrostat

In this section we shall show that the Poisson pencil for the Kowalevski gyrostat found
in [8], within the r-matrix theoretical framework, can be geometrically seen as the result
of a peculiar deformation of the ‘natural’2 Poisson pencil given by equations (2.6) and (2.7).
The fundamental observation in this respect is the following: consider the three vector fields

• X defined by Ȧ = J, Ṡ = 0, Ḃ = 0,
• Y = P d[A]1

2 ([A]1
2 is the (1, 2) element of the matrix A of (2.5)) and

• Z defined by Ȧ = 0, Ṡ = 0, Ḃ = J,

where J is the canonical symplectic matrix (2.2). Thanks to the fact that an antisymmetric
symplectic matrix commutes with J, one easily sees that X is a symmetry of P and Z is a
symmetry of R, that is

LieX(P) = 0 LieZ(R) = 0. (2.11)

Moreover, since [A]1
2 is a Casimir of R, Y is a symmetry of both Poisson tensors. This follows

immediately once one rewrites the compatibility condition between P and R in the equivalent
form:

LiePdf R + LieRdf P = 0 ∀ function f.

These three vector fields mutually commute and the following proposition holds.

Proposition 2.3.

LieX(R) + LieZ(P) = 0 (2.12)

so that the pencil of vector fields X (z) := X + z2Z is a symmetry of the Poisson pencil
Pz = P − z2R.

2 A study of the Kowalevski gyrostat as a system endowed with undeformed brackets was performed in the
preprint [11].
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Proof. It follows from the observation that the Lie derivative of R w.r.t. X is the bivector given
by [

Ȧ

Ṡ

Ḃ

]
=

[ 0
− [J, ·]

0

] 


∂H
∂A

∂H
∂S

∂H
∂B


 (2.13)

and the Lie derivative of P w.r.t. Z is expressed by[
Ȧ

Ṡ

Ḃ

]
=

[ [J, ·]
[J, ·]

[J, ·]

] 


∂H
∂A

∂H
∂S

∂H
∂B


 . (2.14)

The validity of relation (2.12) (which immediately implies the fact that X (z) is a symmetry
of Pz) follows by noticing that the decomposition of sp(4) into symmetric and antisymmetric
matrices is an orthogonal decomposition with respect to the trace form. So, for every function
H , ∂H

∂A
and ∂H

∂B
are antisymmetric matrices, and hence commute with J. �

We now consider the deformation of the Poisson pencil defined as follows: let P =
P − X ∧ Y and R = R − Z ∧ Y .

Proposition 2.4. The pencil of bivectors

Pz = P − z2R

endows M3
� with another structure of the bi-Hamiltonian manifold. Moreover, such

deformation preserves the Lax property, that is every vector tangent to the axis of Pz admits a
Lax representation

L̇(z) = [L(z), M̂(z)]. (2.15)

Proof. The first part of the assertion follows from the above-stated properties of the vector fields
X, Y and Z, since they imply that the Schouten bracket [Pz, Pz] vanishes. As for the second
part, one can argue as follows. We have seen in proposition 2.2 that locally Hamiltonian
vector fields with respect to the ‘undeformed’ pencil Pz admit a Lax representation. We
have only to show that this property is preserved by the deformation of the Poisson pencil
Pz − Pz = (Z − z2X) ∧ Y .

So let us consider a Hamiltonian function, and the vector field

((X − z2Z) ∧ Y ) dH = ((X − z2Z) ∧ P d[A]1
2) dH

which is given by

{H, [A]1
2}P · (X − z2Z) − LieX−z2Z(H) · P d[A]1

2. (2.16)

Since ∂[A]1
2

∂A
= K, a direct substitution into (2.6) shows that the vector field Y = P d[A]1

2
is given by

Ȧ = [A,K] Ṡ = [S,K] Ḃ = [B,K]

that is, the second summand in equation (2.16) gives rise to Lax equations.
The vector field X − z2Z is given by

Ȧ = J Ṡ = 0 Ḃ = −z2J

so that, along its flows, one obtains

L̇(z) = (z2A + zS + B)• = 0 (2.17)
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whence the validity of our assertion. Finally, notice that the deformation of the M-element of
the Lax pair in (2.15) is explicitly given by

M̂(z) − M(z) = Tr

(
J ·

(
∂H

∂A
− z2 ∂H

∂B

))
· K. (2.18)

�

We can finally make contact with the bi-Hamiltonian theory of the Kowalevski gyrostat
discussed in section 5 of [8]. Indeed, the following proposition holds.

Proposition 2.5. The Poisson pencil Pz defined on M3
� restricts to the ten-dimensional

submanifold K ⊂ M3
� defined by the equations

[A]1
2 = γ = const [B]1

4 = [B]1
3 = 0 [B]1

2 = [B]3
4 (2.19)

and it coincides (after a suitable change of coordinates) with the Poisson pencil of
equations (5.4a) and (5.4b) of [8]. The restriction of the Lax matrix L(z) coincides as well
with the Bobenko–Reyman–Semenov-Tian-Shansky one for the Kowalevski gyrostat.

Proof. We will divide the proof into two parts, since the nature of the ‘constraints’ (2.19) is
different. First we consider [A]1

2 = γ . It turns out that [A]1
2 is a common Casimir of P and R.

Indeed, this follows immediately noticing that

P d[A]1
2 = P d[A]1

2 + Y ([A]1
2) · X − X([A]1

2) · Y
R d[A]1

2 = R d[A]1
2 + Y ([A]1

2) · Z − Z([A]1
2) · Y

and that X([A]1
2) = 1, Z([A]1

2) = 0, Y ([A]1
2) = {[A]1

2, [A]1
2}P = 0. So the Poisson pencil Pz

restricts to any submanifold [A]1
2 = γ . The other three constraints are more peculiar, since

[B]1
4, [B]1

3, [B]1
2 − [B]3

4 are not common Casimirs. However, a careful analysis of the form of
Pz on the submanifold K shows that all vector fields that are Hamiltonian w.r.t. either P or R
are tangent to K, so the assertion follows. �

Finally, we can make explicit contact with the formulation of the Kowalevski system
already present in the literature. It is sufficient to parametrize K with the set of coordinates

l1 = [A]1
4 l2 = [A]1

3 l3 = 1/2([A]3
4 − γ ) x = −[B]1

2 = −[B]3
4

g1 = 1/2([S]1
1 − [S]3

3) g2 = 1/2([s]1
2 + [S]3

4) g3 = [S]1
3

h1 = 1/2([S]1
2 − [S]3

4) h2 = −1/2([S]3
3 + [S]1

1) h3 = [S]1
4

to recast the Lax matrix in its ‘standard’ form

L(λ) = z3




0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 2


 + z2




0 −γ −l2 −l1
γ 0 l1 −l2
l2 −l1 0 −2l3 − γ

l1 l2 2l3 + γ 0




+z



g1 − h2 g2 + h1 g3 h3

g2 + h1 −g1 + h2 h3 −g3

g3 h3 −g1 − h2 g2 − h1

h3 −g3 g2 − h1 g1 + h2


 +




0 x 0 0
−x 0 0 0
0 0 0 x

0 0 −x 0



(2.20)

and obtain the Poisson tensors of [8], section 5.
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3. The Kowalevski gyrostat as a GZ system

The ‘ideology’ of the GZ theory for integrable systems defined on a bi-Hamiltonian manifold
(M, Pλ) essentially relies on the study of the Casimir functions of the Poisson pencil Pλ, to be
found as a series (eventually, for the case of the so-called flat Poisson pencils, a polynomial)
in the parameter λ of the pencil.

Standard procedures from the theory of Lenard–Magri sequences show that all the
coefficients of these polynomials (or series) mutually commute. Let us now apply these
ideas to the Kowalevski systems.

Since the Poisson pencil we have at our disposal is associated with a Lax scheme, it is
natural to consider ad-invariant polynomials as sources of mutually commuting Hamiltonians.
Indeed the following proposition holds.

Proposition 3.1. Let us consider det(L(z) − µI) = µ4 + Ĉ2µ
2 + Ĉ0. Then Ĉ0 and Ĉ2 are

polynomial Casimirs of Pz.

Proof. The conclusion easily follows from the following two facts.

(1) The elementary ad-invariant polynomials of sp(4), that is, φ1 = Tr(L2) and φ2 = Tr(L4),
satisfy Pz(dφi) = 0, since the bi-Hamiltonian flows are represented by a Lax equation;

(2) det(L(z) − µI) depends on z2 alone.

Furthermore, looking at the explicit form (2.20) of the Lax matrix, one can see that the
coefficients Ĉ0, Ĉ2 of the characteristic polynomial of L(z) are given by

Ĉ2 = −4z6 + H0z
4 + H1z

2 + H2

Ĉ0 = −4γ 2z10 +
5∑

i=1

Ki−1z
10−2i.

(3.1)

So, discarding the leading constant terms, we obtain two polynomial Casimirs, C2 =
Ĉ2 + 4z6, C0 = Ĉ0 + 4γ 2z10. �

However, this is not the whole story. Since the manifold K is ten dimensional, and
the rank of Pz is equal to eight (for generic z and at generic points of K), not all the
commuting Hamiltonians H1, . . . , K5 can be functionally independent. In other words, the
Lenard sequence obtained from C2 comprises two vector fields X1 and X2, and that obtained
from C2 comprises four vector fields X̃i, i = 1, . . . , 4. However, the dimension of the span
〈X1, . . . , X̃4〉 is equal to the expected number 4 = (dim M − corankPz)/2. Indeed the
following proposition holds.

Proposition 3.2. The degree 4 polynomial

C1 = z4J0 + z2J1 + J2

= z4

(
K0 − H0

2

4

)
+ z2

(
K1 − H0H1

2

)
+

(
K2 − H2H0

2
− H1

2

4

)
(3.2)

is another Casimir of the Poisson pencil Pz, functionally independent of C2. So the two-field
Kowalevski gyrostat has the structure of a GZ manifold of rank 2 and type (5, 5) (see figure 1).
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Figure 1. The Lenard sequences for the two-field Kowalevski gyrostat.
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Figure 2. The Lenard sequence for the Kowalevski top.

3.1. The reduction to the Kowalevski top

In this final section we will study the corresponding issues relative to the Kowalevski top,
which is obtained from the system studied in the previous section, freezing the extra degrees
of freedom (�h and x) to zero3. We shall see that it is possible to induce a bi-Hamiltonian
structure on the phase space S of the Kowalevski top, and that the Lenard sequences induce
corresponding (shorter) Lenard sequences on S. To do this, it is necessary to briefly illustrate
a slightly unconventional point of view on the notion of Dirac brackets4.

3.1.1. Dirac brackets. Let (M,P ) be a Poisson manifold, and let us fix a distinguished set
of functions φi, i = 1, . . . , k, with k < n = dim(M). Suppose that

/0 := {φ1(x) = φ̄1, . . . , φk(x) = φ̄k}
defines a cosymplectic foliation on (M,P ), that is, the matrix {φi, φj } = Gij is (generically)
non-degenerate.

The bracket PD (as a Poisson bracket on the manifold M) defined by the usual Dirac
formula,

{f, g}D = {f, g} −
∑
i,j

{f, φi}G−1
ij {φj , g} (3.3)

3 For simplicity, the gyrostatic term γ will be set to zero as well.
4 We learned this picture from conversations with B Dubrovin, that are herewith gratefully acknowledged.
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has the following properties.

(1) The functions φi, i = 1, . . . , k are Casimir functions for the bracket PD.
(2) For every leaf S of the foliation /, the bracket PD induces a corresponding Poisson

bracket PD
S ; the immersion of (S, PD

S ) in (M,PD) is a Poisson map. This means that, if
(·)S denotes restriction to S, we have the equality

PD
S dSfS = PD df. (3.4)

Notice that, thanks to this property, we will be allowed to avoid writing the subscript (·)S
in most of the computations performed in the next section.

3.1.2. Dirac Poisson brackets for the Kowalevski top. The phase space of the Kowalevski top
is the submanifold S := {x = 0, �h = 0, γ = 0}, inside the phase space K of the Kowalevski
gyrostat in two fields. We have seen that K is endowed with the Poisson pencil Pλ = P − λR

(λ = z2); the GZ geometry of (K, Pλ) is encoded in the two Casimir functions

C2 = H0λ
2 + H1λ + H2 C1 = J0λ

2 + J1λ + J2

that give rise to the four bi-Hamiltonian vector fields X1, X2, Y1, Y2.
The following properties can be ascertained by means of direct calculations.

(1) The Dirac procedure can be applied for Pλ, with the foliation associated with the functions
{φ1, . . . , φ4} = {x, �h}. Actually, it turns out that the matrix Gλ of Poisson brackets of the
constraints is the following:

λ




0 h2 − g1 −h1 − g2 −g3

−h2 + g1 0 −l3 l2
h1 + g2 l3 0 −l1

g3 −l2 l1 0


 .

This means that, outside the subvariety5 2 defined by

det(G) = (�g · �l + (�h ∧ �l)3)
2 = 0

we have that the Dirac procedure induces a new Poisson pencil on K (and correspondingly
on S), which we call PD

λ = PD − λRD.
(2) All the vector fields Xi, Yi are tangent to S, and X2 and Y2 vanish there.
(3) The Hamiltonians H2 and J2 vanish identically on S. Actually, the Casimir polynomials

restrict to

C2|S = (−4 g1 + 4 l3
2 + 2 l2

2 + 2 l1
2)z4 + (−2 g3

2 − 2 g2
2 − 2 g1

2)z2

C1|S = (8 g1l3
2 + 4 g2

2 + 8 l1
2g1 + 8 l1g2l2 − 4 l3

2l2
2 − 4 l3

2l1
2 − 4 l3

4)z4

+(4 g2
2l2

2 + 4 g1
2l1

2 + 8 g3l3g2l2 + 8 l1l3g1g3 + 8 g1l1g2l2 + 4 l3
2g3

2)z2.

(4) On the Kowalevski top submanifold S, (the restriction of) PD coincides with (the
restriction of) P .

Finally, we are in a position to prove the following.

Proposition 3.3. The flows of the Kowalevski top fill in a suitable pair of Lenard sequences
with respect to the Dirac brackets PD, RD.

5 From now on we will implicitly work outside 2 to avoid cumbersome notations.
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Proof. Let us consider the two Lenard sequences associated with Pλ. If we restrict them to S,
thanks to property 4 above, we can safely assert that

PD(dH1) = 0 PD(dH0) = X1

PD(dJ1) = 0 PD(dJ0) = Y1.

We simply have to prove that RD(dH1) = X1, R
D(dJ1) = Y1 and that RD(dH0) = RD(dJ0) =

0, filling the missing vertical arrows in the Lenard sequence. All the proofs are done in the
same way, so we will do this for X1 only. To this end it is useful to represent RD as follows:
let Zi = R dφi and denote by 3 the inverse matrix to G. Then the Dirac bracket relative to
RD is represented by the Poisson tensor

RD = R −
∑
i,j

3i,jZi ∧ Zj . (3.5)

We have to compute RD(dH1); so from (3.5) we have

RD(dH1) = R(dH1) −
∑
i,j

3ij (LieZi
(H1) · Zj − LieZj

(H1) · Zi).

The first term in the right-hand side of this equation is exactly X1; moreover, in the sum over
i, j , each element vanishes: indeed, we have, since Zi = R dφi ,

LieZi
(H1) = 〈 dH1, R dφi〉 = −〈 dφi, R dH1〉 = −〈 dφi,X1〉

and it vanishes since X1 is tangent to S. This concludes our proof. �
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